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1 Definition

The Kullback-Leibler divergence1 of Q from P is defined as

DKL(P‖Q) =

∫
P (x) [logP (x)− logQ(x)] dx,

where P and Q are probability densities with respect to a common measure.
(In the case of counting measure, this makes P and Q be probability mass
functions.) This is also an expectation over P of a function involving logs of
densities:

DKL(P‖Q) = EP (x 7→ logP (x)− logQ(x)).

2 Interpretations

For discrete distributions, KL divergence can be interpreted as the expected
extra bits needed to code elements of P with an optimal code for Q, over
what would be needed for an optimal code for P .

Freer, Mansinghka, and Roy 2 prove that the KL divergence also gives
the performance of a rejection sampler. Specifically,

Proposition 1 (Freer, Mansinghka, Roy, pg. 2). Let N be the number
of attempts before a rejection sampler for P with proposal distribution Q
succeeds. N is geometrically distributed with mean exp(DKL(P‖Q)).

1https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
2danroy.org/papers/FreerManRoy-NIPSMC-2010.pdf When are probabilistic pro-

grams probably computationally tractable?
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This corresponds with the general intuition that proposal distributions
should try to be broader than their targets rather than narrower.

3 Properties

KL divergnce is

• Non-negative, and zero only if P = Q almost everywhere

• Invariant to parameterization

• Not symmetric

• Does not obey the triangle inequality

For non-negativity, consider the function whose expected value is the
divergence: x 7→ logP (x) − logQ(x). This function will be (large and)
positive in areas that are (much) more likely under P than under Q, and
(large and) negative in areas that are (much) more likely under Q than
under P . But since the expectation is being taken with respect to P , it
should stand to reason that the behavior in areas likely under P dominates.

For parameterization invariance, we reproduce the derivation from Wikipedia.

Proof. If a transformation is made from variable x to variable y(x), then,
since P (x)dx = P (y)dy and Q(x)dx = Q(y)dy the KL divergence may be
rewritten

DKL(P‖Q) =

∫
P (x) log

(
P (x)

Q(x)

)
dx

=

∫
P (y) log

(
P (y)dy/dx

Q(y)dy/dx

)
dy

=

∫
P (y) log

(
P (y)

Q(y)

)
dy
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4 Example: KL of 1-D Gaussians

As a refresher, the probability density function of the Gaussian distribution
with mean µ and standard deviation σ is

N (µ, σ)(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
,

and its log is correspondingly

logN (µ, σ)(x) = −(x− µ)2

2σ2
− log σ − log

√
2π.

Let us examine the behavior of the KL divergence of one Gaussian distri-
bution Q from another, P . By parameterization invariance, we can normalize
P to be the standard Gaussian, which we will denote N , dropping the mean
and deviation arguments. Then we have

DKL(N‖N (µ, σ)) = EN [logN (x)− logN (µ, σ)(x)]

= EN

[
−x

2

2
+

(x− µ)2

2σ2
+ log σ

]
= −1

2
EN [x2] +

1

2σ2
EN [x2]− 2µ

2σ2
EN (x) +

µ2

2σ2
+ log σ

=
µ2 + 1

2σ2
+ log σ − 1

2
.

where we used that EN (x) = 0 and EN (x2) = 1 are the mean and variance
of the standard Gaussian distribution. Using translation and scaling, we get
for the general case

DKL(N (µP , σP )‖N (µQ, σQ)) =
(µQ − µP )2 + σ2

P

2σ2
Q

+ log σQ − log σP −
1

2
.

Some interpretation:

• If σQ is large relative to the other quantities, the log σQ term will dom-
inate, so the divergence of a broad Gaussian from a narrow one grows
logarithmically.
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• For fixed standard deviations that are small relative to the mean dif-
ference, the KL divergence of two Gaussians is quadratic in said mean
difference.

• If σP is large relative to the other quantities, the KL divergence is
quadratic in it.

5 Mixture distributions

Consider the definition of KL divergence again

DKL(P‖Q) = EP (x 7→ logP (x)− logQ(x)),

this time in the context of P and Q being mixture distributions

P (x) =
∑
i

wiPi(x) Q(x) =
∑
j

wjQj(x)
∑
i

wi =
∑
j

wj = 1.

If the mixture components Pi and widely separated, one term will domi-
nate each sum. Call its index i(x). Then

DKL(P‖Q) ≈ EP

[
logPi(x)(x) + logwi(x) − logQ(x)

]
.

The approximateness comes from the smaller terms in each sum, which can
be viewed as bumping up the weight of the best component a bit if there is
another component that’s amost as good.3 Moreover, the expectation over
P is the weighted sum of expectations over Pi, and we may assume that for
x drawn from Pi, Pi stands to dominate the density function. This brings us
to

DKL(P‖Q) ≈
∑
i

wi logwi +
∑
i

wiEPi
[logPi(x)− logQ(x)]

=
∑
i

wiDKL(Pi‖Q)−H(wi).

This is the weighted sum of divergences of Q from the mixture components
Pi, less the entropy of the mixture weights wi.

If the mixture components Qj are also widely separated, the same rea-
soning applies to the logQ(x) term. If we further assume that for samples

3For instance, if P1(x) = P2(x)� Pi(x), then logP (x) ≈ logP1(x) + logw1 + logw2.
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from any given component Pi, the contribution of a single component Qj(i)

always dominates, we find

DKL(P‖Q) ≈
∑
i

wi logwi +
∑
i

wiEPi

[
logPi(x)− logQj(i)(x)− logwj(i)

]
=

∑
i

wiDKL(Pi‖Qj(i))−H(wi) +H(wi, wj(i)),

which is the weighted (by the weights in P ) sum of the KL divergences of
corresponding mixture components, less the entropy of the weights of P , plus
the cross-entropy of the weights wj(i) with respect to the wi.
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6 Computing KL divergence

KL divergence of Q from P is an expectation over P of a function determined
by the density functions of P and Q. Therefore, if P is samplable and P and
Q are assessable (resp. approximately assessable), we can approximate the
KL (resp. the KL of approximate distributions) by Monte Carlo integration:

xi ∼ P N samples from P

D̂KL =
1

N

∑
i

logP (xi)− logQ(xi).

The Central Limit Theorem implies that if the random variable obtained
by computing logP (xi) − logQ(xi) for xi sampled from P has finite mean
M and variance Σ2, then as N rises the distribution of the above estimate
will converge to the Gaussian N (M,Σ/

√
N). We can therefore estimate the

error of any particular computed mean as the sample variance of {logP (xi)−
logQ(xi)}N1 .

Let’s check this for the Gaussian case. From Section 4, the true mean M
is

M = DKL(N‖N (µ, σ)) =
µ2 + 1

2σ2
+ log σ − 1

2
.

The variance of our estimator is

4Well, not exactly, because the wj(i) needn’t sum to 1, but the notation serves as a
mnemonic.
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Σ2 = EN [logN (x)− logN (µ, σ)(x)−M ]2

= EN

[
−x

2

2
+

(x− µ)2

2σ2
+ log σ −M

]2
.

To perform this calculation, we are going to first expand both squares and
group the powers of x. Letting

A = −1

2
+

1

2σ2

B =
µ

σ2

C =
µ2

2σ2
+ log σ

we have

M = A+ C

Σ2 = EN
[
Ax2 −Bx+ C − (A+ C)

]2
= EN

[
A2x4 − 2ABx3 +

(
−2A2 +B2

)
x2 + 2ABx+ A2

]
= 3A2 − 2A2 +B2 + A2

= 2A2 +B2

=
1

2
− 1

σ2
+

1 + 2µ2

2σ4
,

where line 4 relies on the known values for the moments of the standard
Gaussian distribution: EN (1) = 1, EN (x) = 0, EN (x2) = 1, EN (x3) = 0,
EN (x4) = 3.

I read the above formulas as good news and bad news. The good news
is that the variance of our KL estimator is finite for all divergences of non-
degenerate Gaussians, so the CLT applies and the estimate will eventually
converge to having a predictable error. The bad news is that this may take
a long time: the variance is quadratic in the difference of means (when that
difference begins to exceed the standard deviation of P ), and quartic in the
ratio of standard deviations. Comparing this to the formula for the mean
estimate itself, getting down to 10% relative error means taking O(100/σ2)
samples in the small-σ regime.

6


	Definition
	Interpretations
	Properties
	Example: KL of 1-D Gaussians
	Mixture distributions
	Computing KL divergence

