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1 Definition

The Kullback-Leibler divergencd!] of @ from P is defined as

DislPIQ) = [ P(@) log P(v) ~ log Qo)) .

where P and () are probability densities with respect to a common measure.
(In the case of counting measure, this makes P and @) be probability mass
functions.) This is also an expectation over P of a function involving logs of
densities:

D r(P||Q) = Ep(z = log P(z) —log Q(x)).

2 Interpretations

For discrete distributions, KL divergence can be interpreted as the expected
extra bits needed to code elements of P with an optimal code for @), over
what would be needed for an optimal code for P.

Freer, Mansinghka, and Roy [ prove that the KL divergence also gives
the performance of a rejection sampler. Specifically,

Proposition 1 (Freer, Mansinghka, Roy, pg. 2). Let N be the number
of attempts before a rejection sampler for P with proposal distribution ()
succeeds. N is geometrically distributed with mean exp(Dgr (P Q)).

"https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
2danroy.org/papers/FreerManRoy-NIPSMC-2010.pdf| When are probabilistic pro-
grams probably computationally tractable?


https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
danroy.org/papers/FreerManRoy-NIPSMC-2010.pdf

This corresponds with the general intuition that proposal distributions
should try to be broader than their targets rather than narrower.

3 Properties

KL divergnce is

Non-negative, and zero only if P = () almost everywhere

Invariant to parameterization

Not symmetric

Does not obey the triangle inequality

For non-negativity, consider the function whose expected value is the
divergence: z + log P(z) — log@Q(x). This function will be (large and)
positive in areas that are (much) more likely under P than under ), and
(large and) negative in areas that are (much) more likely under @ than
under P. But since the expectation is being taken with respect to P, it
should stand to reason that the behavior in areas likely under P dominates.

For parameterization invariance, we reproduce the derivation from Wikipedia.

Proof. 1f a transformation is made from variable x to variable y(x), then,
since P(z)dx = P(y)dy and Q(z)dx = Q(y)dy the KL divergence may be

rewritten
DauPl@) = [ Pyog (P(”)) d




4 Example: KL of 1-D Gaussians

As a refresher, the probability density function of the Gaussian distribution
with mean p and standard deviation o is

Nia)e) = —=exp (-0,

and its log is correspondingly

1 N _ (x — N)Q
og N (p,0)(z) = ooz T log o — log /2.

Let us examine the behavior of the KL divergence of one Gaussian distri-
bution ) from another, P. By parameterization invariance, we can normalize
P to be the standard Gaussian, which we will denote A/, dropping the mean
and deviation arguments. Then we have

DgrNN(p,0)) = EyllogN(z) —log N'(p, 0)()]
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where we used that Ex(z) = 0 and Ep(2?) = 1 are the mean and variance
of the standard Gaussian distribution. Using translation and scaling, we get
for the general case

2 2
Hg — pup) +o 1
Drr(N(up,op)|IN (g, 0q)) = (g 2;) L +logog —logop — 5
Q

Some interpretation:

o If 0 is large relative to the other quantities, the log o term will dom-
inate, so the divergence of a broad Gaussian from a narrow one grows
logarithmically.



e For fixed standard deviations that are small relative to the mean dif-
ference, the KL divergence of two Gaussians is quadratic in said mean
difference.

o If op is large relative to the other quantities, the KL divergence is
quadratic in it.

5 Mixture distributions

Consider the definition of KL divergence again
Dk (P||Q) = Ep(z — log P(x) — log Q(x)),

this time in the context of P and @) being mixture distributions
P(zx) = ZwiPi(:B) Q(zx) = ijQj(x) Zwi = ij =1.
i j i ]

If the mixture components P; and widely separated, one term will domi-
nate each sum. Call its index i(x). Then

Dir(P||Q) = Ep [log Piw)(x) + log wi(zy — log Q(z)] .

The approximateness comes from the smaller terms in each sum, which can
be viewed as bumping up the weight of the best component a bit if there is
another component that’s amost as good.E] Moreover, the expectation over
P is the weighted sum of expectations over P;, and we may assume that for
x drawn from P;, P; stands to dominate the density function. This brings us
to

Dkr(PllQ) =~ Zwilogwi—l—ZwiEpi [log P;(x) — log Q(z)]
= sz‘DKL(Pz‘HQ)—H(wz’)-

This is the weighted sum of divergences of () from the mixture components
P;, less the entropy of the mixture weights w;.

If the mixture components (); are also widely separated, the same rea-
soning applies to the log Q(z) term. If we further assume that for samples

3For instance, if Pj(x) = Py(z) > P;(z), then log P(z) ~ log Py (z) + log w; + log ws.
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from any given component P, the contribution of a single component @
always dominates, we find

Dkr(PlQ) =~ Z w; logw; + ZwiEpi [log P;(z) —log Q) () — log wjs))

= ZwiDKL(PiHQj(i)) — H(w;) + H(w;, wj),

which is the weighted (by the weights in P) sum of the KL divergences of
corresponding mixture components, less the entropy of the weights of P, plus
the cross-entropy of the weights w;(;) with respect to the w; E|

6 Computing KL divergence

KL divergence of () from P is an expectation over P of a function determined
by the density functions of P and (). Therefore, if P is samplable and P and
(@) are assessable (resp. approximately assessable), we can approximate the
KL (resp. the KL of approximate distributions) by Monte Carlo integration:

x; ~ P N samples from P
— 1
Dy, = NZIOgP(a:i) —log Q(z;).

The Central Limit Theorem implies that if the random variable obtained
by computing log P(x;) — log Q(z;) for x; sampled from P has finite mean
M and variance Y2, then as N rises the distribution of the above estimate
will converge to the Gaussian N (M, X/v/N). We can therefore estimate the
error of any particular computed mean as the sample variance of {log P(z;) —
log Q(z:)}Y.

Let’s check this for the Gaussian case. From Section [d] the true mean M
is
2+1 1

52 +logo — 3

M = Dgr(N|N (o) =5

The variance of our estimator is

4Well, not exactly, because the wj(;y needn’t sum to 1, but the notation serves as a
mnemonic.



$? = En[logN(z) —log N (u,0)(z) — M]*

= Ey _x_+—(a:—u) +logo— M

2 202

To perform this calculation, we are going to first expand both squares and
group the powers of x. Letting

1 1

A= ——+—
2+202
W

B - ;
2
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C = 2T._Z—I—IOgO'

we have
M = A+C

¥2 = Ey[A2’ —Ba+C —(A+0)]°
= Eu [A2x4 — 2ABz3 + (—2A2 + BQ) z? + 2ABx + AQ}
= 3A4% —2A%* + B* + A?

2A% + B?
R
2 g2 204 7

where line 4 relies on the known values for the moments of the standard
Gaussian distribution: Ex(1) = 1, Ex(x) = 0, Ex(2?) = 1, Ex(2?) = 0,
En(z?) = 3.

I read the above formulas as good news and bad news. The good news
is that the variance of our KL estimator is finite for all divergences of non-
degenerate Gaussians, so the CLT applies and the estimate will eventually
converge to having a predictable error. The bad news is that this may take
a long time: the variance is quadratic in the difference of means (when that
difference begins to exceed the standard deviation of P), and quartic in the
ratio of standard deviations. Comparing this to the formula for the mean
estimate itself, getting down to 10% relative error means taking O(100/0?)
samples in the small-o regime.
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