Massachusetts Institute of Technology

The MIT Probabilistic Computing Project

How can we give computers simple forms of judgment, intuition, and imagination? Our minds are able to explore vast spaces of possible thoughts, perceptions, and explanations, and identify the probable ones in milliseconds. To understand and augment these human capacities, we are building a new generation of computing systems that integrate probability and randomness into the basic building blocks of software and hardware. We have discovered that this leads to surprising new AI capabilities, some of which have proved to be useful in industry. This work is grounded in basic research on probabilistic programming and the mathematical foundations of probabilistic computation. We also make our work as freely available as possible via open-source software, public workshops, and online educational materials; and collaborate on applications in the public interest.

Watch a video of PI Vikash Mansinghka's MIT Media Lab talk on Probabilistic Programming for Augmented Intelligence for an overview of capabilities as of March 2016, including applications to public interest data analysis.


Upcoming Talks

Software Platforms

For non-technical users, BayesDB makes it possible to query the probable implications of data, build baseline models, and assess inference credibility without training in statistics. BayesDB also lets statisticians easily build complex models that combine semi-parametric Bayes, machine learning, computer simulations, and qualitative (in)dependencies specified by domain experts.

VentureScript, a high-level inference programming language, has recently been used to reimplement and extend the Automatic Statistician; see our paper [PDF] for details.


For a full list of papers, technical reports, and conference presentations, please see our publications page.

The ProbComp Reading List serves as a shared basis of knowledge for the project.

Principal Investigator

Vikash K. Mansinghka
(office) 46-4094A
(lab) 46-5089
Vikash Mansinghka is a research scientist at MIT, where he leads the Probabilistic Computing Project. Vikash holds S.B. degrees in Mathematics and in Computer Science from MIT, as well as an M.Eng. in Computer Science and a PhD in Computation. He also held graduate fellowships from the National Science Foundation and MIT's Lincoln Laboratory. His PhD dissertation on natively probabilistic computation won the MIT George M. Sprowls dissertation award in computer science, and his research on the Picture probabilistic programming language won an award at CVPR. He co-founded a venture-backed startup based on this research that was acquired by, was an advisor to Google DeepMind, and is a co-founder of Empirical Systems, a new venture-backed AI startup aimed at improving the credibility and transparency of statistical inference. He served on DARPA's Information Science and Technology advisory board from 2010-2012, and currently serves on the editorial boards for the Journal of Machine Learning Research and the journal Statistics and Computation.

Current Members

Former Members


The MIT Probabilistic Computing Project is hosted by MIT's Computer Science and Artificial Intelligence Laboratory and Department of Brain and Cognitive Sciences.

Our work is generously supported by research contracts with DARPA (under the XDATA and PPAML programs), the Office of Naval Research and the Army Research Laboratory, and Shell Oil, as well as gifts from Analog Devices and Google. The views expressed on this website and in our research are our own, and do not necessarily reflect the views of our government or corporate sponsors.